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Abstract—Rare diseases are hard to identify and diagnose.
Our goal is to use self-reported behavioural data to distinguish
people with rare diseases from people with more common chronic
illnesses. To this effect, we adapt a state of the art machine
learning algorithm to make this classification. We find that
using this method, and an appropriate set of questions, we can
accurately identify people with rare diseases.

I. INTRODUCTION

Researchers have dedicated themselves to designing and
understanding technologies to support individuals with chronic
illnesses in managing their health (e.g. [1]–[4]). These inter-
ventions allow people to change their behaviour (e.g. [5]),
learn about their disease (e.g. [6]), get support from simi-
lar others (e.g. [7]), or track information about themselves
(e.g. [8]). However, as far as we are aware, there are not many
technologies that focus on rare diseases. These diseases are
not generally as well understood in the medical literature and
do not have the same constrained set of symptoms to support
through design.

There are, however, experiences in common between people
with rare diseases, and we argue that these experiences are
distinct from the experiences of people with common chronic
illnesses [9]. There are a wealth of opportunities to support
these experiences through the design of appropriate technolo-
gies.

Rare diseases impact approximately 10% of the world’s
population [10]. Despite impacting a substantial number of
people, rare diseases are hard to diagnose; receiving a diag-
nosis can take over five years in the UK and over seven years
in the US. Patients often receive 2–3 misdiagnoses before
converging on a lasting diagnosis [10]. Physicians are often
taught to focus on the most likely diagnosis (“When you hear
hoofbeats, think horses not zebras”) and it can take visits to
many different physicians and specialists to actually identify
and diagnose a rare disease [11], [12].

This extended diagnosis process can be extremely frustrat-
ing for an individual experiencing an undiagnosed disease. It
is crucial to be able to identify and diagnose these condi-
tions in a timely manner. The drawn out diagnosis process
can have serious implications for the individuals with rare
diseases (health management, finances, work, personal stress,
and many other aspects of life). This can cause a huge strain
on relationships [9].

As an example, we can consider an individual with an
undiagnosed case of amyotrophic lateral sclerosis (ALS), also
known as Lou Gehrig’s disease. This is a debilitating neurode-
generative disease, but it has a gradual onset which makes it
difficult to diagnose early. ALS has a mean survival time of
3–5 years from after the onset of the disease, but this can be
prolonged with treatment [13]. Getting diagnosed quickly is
imperative—we are willing to screen many individuals who
may have ALS, knowing that many of them will not have it,
to ensure that we do catch the positive cases. This allows those
people to receive treatment early and manage the condition as
best as is possible.

In this work, we created a survey where the questions were
inspired by the results of our previous work [9]. We distributed
this survey to people with common chronic illnesses as well
as people with rare diseases to help better understand the
differences between these two groups and especially to identify
the rare examples. Specifically, we ask the following question:
Can advanced machine learning techniques, when combined
effectively with data about the experiences of people with
different health conditions, effectively predict the occurrence
of rare diseases? The challenge here is that, given the rarity of
the diseases, our survey responses are skewed towards people
with common chronic illnesses (i.e. we have more responses
from people with common illnesses than we do from people
with rare diseases). This problem is called class imbalance in
machine learning [14]. If we consider people with a common
chronic illness as one class and people with a rare disease
as another, there is a huge skew towards people with common
diseases (by the definition). Simply adopting standard learning
techniques can achieve high accuracy by predicting all the
examples as the majority class (common chronic illnesses).

Consequently, there has been research in the machine learn-
ing community on specific algorithms that can handle the
imbalance in a principled manner. Recently, we developed
an algorithm [15] that can learn from imbalanced relational
data by explicitly trading-off between false positives and false
negatives. While the algorithm was designed for learning
relational dependency networks, we adapt the algorithm to
learn a probabilistic model with standard feature vectors.

The specific contributions of this work are:
1) the adaptation and application of soft-margin functional

gradient boosting [15] to a new, real world problem



space (i.e. identifying people with rare diseases),
2) a demonstration of the potential to learn about health

from self-reported behavioural data (as an alternative to
clinical/medical data), and

3) a discussion of the differences between rare disease
and common chronic illness populations to bolster and
extend previous qualitative work on this topic [9].

In this paper, we begin by providing background infor-
mation on rare diseases as well as approaches to learning
about health from online behaviour. We discuss the design
and distribution of our survey, and the responses we received.
We introduce our adapted approach to soft-margin functional
gradient boosting, and present the results of experiments on
this approach. We conclude by discussing the resulting model
and its interpretation of the differences between common
chronic illness populations and people with rare diseases, as
well as a brief discussion of possible future work in this area.

II. BACKGROUND

A. Rare Diseases
Rare diseases are conditions that, by definition, impact an

extremely small number of people. In the US, rare diseases
are those that impact less than 200,000 people (or 0.06% of
the population) [10]. In Europe, they are defined as affecting
no more than 5 out of every 10,000 people (0.05% of people).
While each individual disease is rare, it is estimated that 10%
of people world wide have one of the approximately 7,000
rare diseases [10].

Although rare diseases have not been widely studied in con-
sumer health informatics communities, some previous work
has begun to examine the needs of people with rare diseases,
and how they are similar to or different from the needs
of people with common chronic illnesses (i.e. diseases like
diabetes, asthma, or arthritis that impact large numbers of
people). In our previous work [9], we found that people
with rare diseases face a unique set of challenges because
they have diseases that few have even heard of, let alone
understand. Although some have strong support systems, many
have friends and family members that do not understand well
enough to really be helpful. Additionally, many of these family
members are in denial about the prognosis of the disease,
so people with rare diseases rely a lot more heavily on
online communities for social and emotional support. These
communities also serve as a place to exchange information,
because health care providers are also often unfamiliar with
rare diseases and patients quickly become researchers and
experts in their own conditions. Our past work provided a
discussion of the needs of people with rare diseases from a
human computer interaction (HCI) perspective, and suggested
that these needs should be considered differently than what
already exists in the literature about people with common
chronic illnesses. We build on this work by:

1) collecting data on a larger scale to validate these quali-
tative findings, and

2) collecting data from both rare and common chronic
illness populations, and modelling the differences with

the goal of better understanding the ways in which rare
disease populations are unique.

B. Learning about Health From Online Behaviour

Much of what we know about health and medicine is
the result of rigorous clinical and medical research. Recent
research however has seen value in using social media data to
identify large scale public health patterns such as influenza
spread [16]–[18], detecting depression [19], or Ebola out-
breaks [20]. Additional research has been able to identify
drug-drug interactions or adverse drug events from Twit-
ter [21], [22] or Instagram [23]. These studies all rely primarily
on people’s posts about clinical information (i.e. drug names,
disease/condition names, symptoms). In this work, we are
interested in the value of behavioural data in identifying
people with rare diseases. That is, we are not looking for social
media posts about the diseases symptoms or treatments, but
instead explore how people use the Internet and social media
to access health information and support.

Some researchers have taken a similar behavioural approach
to identifying people with a specific health condition. Saeb
et al. [24] found that GPS and usage data from cellphones
were strongly related to the severity of depressive symptoms.
These types of approaches allow us to learn a great deal about
conditions that are otherwise under-reported (e.g. because of
stigma). Identifying people with rare diseases presents an
additional challenge because we are not targeting one single
rare disease, but instead targeting a large class of diseases
that are united by their rarity but may have wildly different
symptoms. This approach allows us to identify people with
diseases about which very little clinical information is known,
and ultimately provide them with social or informational
support, without needing to know specifically what disease
they have.

III. SURVEY

We created and distributed a survey to better understand the
differences between the behaviour of people with rare diseases
and people with common chronic illnesses. This study was
approved by the Institutional Review Board (IRB) at Indiana
University.

A. Survey Design & Distribution

We selected topics for the survey questions that our previ-
ous work (as well as existing literature on common chronic
illnesses) had demonstrated to be areas where people with
rare diseases and people with common chronic illnesses were
different—these primarily had to do with technology use, in-
formation seeking, and perception of health care professionals.
We prepared the survey questions based on a similar Pew
Internet & American Life Project survey [25] but tailored
the questions to our specific research questions, removing
questions that seemed irrelevant and modifying questions to
better incorporate prior knowledge. The survey contained 35
questions, divided into 4 themes (Table I).



Theme Questions Answers

Demographic
Information

Age Number entry
Gender Male, Female, Other
Country of Residence Text entry

Marital Status {Married, Living with a Partner, Divorced, Separated,
Widowed, Single, Other}

Employment {Full time, Part time, Retired, Student, Disabled, Not
Employed for Pay}

Education

{Less than grade 8, some high school, completed
high school, technical/trade/vocational school, some
college/university, completed college/university, some
post-graduate education, completed post-graduate ed-
ucation}

Disease
Information

Disease name Text entry
How many years has it been since you first started
experiencing symptoms? Number entry

How many years has it been since you were diag-
nosed? Number entry

How severely do your symptoms impact your life? 5 point scale from No impact to Extreme impact

Technology
Use

How often do you use the internet? {Several times a day, About once a day, Several times
a week, Every few weeks, Less often, Never}

Do you own any of the following technologies?
(Check all that apply)

{Desktop computer, Laptop computer, Cell phone, e-
Reader, MP3 Player, Game console, Tablet}

On your cell phone, do you have any applications that
help you track or manage your health? {Yes, No, I dont have a cellphone}

Do you ever use your cell phone to look up health or
medical information? {Yes, No, I dont have a cellphone}

Have you ever looked online for information about
any of the following? (Check all that apply)

{Information about a specific disease or medical prob-
lem, Information about a certain medical treatment
or procedure, Information about doctors or other
health professionals, Information about hospitals or
other medical facilities, Information related to health
insurance, Information about environmental health
hazards, Information about drug safety or recalls, In-
formation about managing chronic pain, Information
about medical test results, Information about memory
loss, Information about any other health issue}

Have you ever done any of the following? (Check all
that apply)

{Signed up to receive email updates or alerts about
health or medical issues, Read someone elses com-
mentary or experience about health or medical issues
on an online group, website, or blog, Watched an
online video about health or medical issues, Gone
online to find others who might have health concerns
similar to yours, Tracked your weight, diet or exercise
routine online, Tracked other health indicators or
symptoms online}

Have you posted comments, questions or information
about your health or medical issues on any of the
following? (Check all that apply)

{In an online discussion specific to your condition,
In a health related online discussion not specific to
your condition, On a blog, On Facebook, Twitter or
another social networking site, On YouTube or other
video sharing site, On a website of any kind}

Have you ever used a social networking site to do any
of the following? (Check all that apply)

{Get health information, Start or join a health-related
group, Follow your friends personal health experi-
ences or health updates, Raise money or draw atten-
tion to a health related issue or cause, Remember or
memorialize others who suffered from a certain health
condition}



Have you been helped by following medical advice
or health information found on the internet?

7 point scale from “Yes, major help” to “No serious
harm”

Have you ever done any of the following online?
(Check all that apply)

{Consulted online rankings or reviews of doctors or
other providers, Consulted online rankings or reviews
of hospitals or other medical facilities, Consulted on-
line reviews of particular drugs or medical treatments,
Posted a review online of a doctor, Posted a review
online of a hospital, Posted your experience with a
particular drug or medical treatment online}

Health care
profession-

als

Do you have a personal or family doctor that you rely
on if you need medical care? {Yes, No}

How many specialists did you see in the last two
years? Number entry

Think about the doctor or healthcare professional that
you get most of your medical care from.
• How helpful is this person in giving you an

accurate medical diagnosis?
• How helpful is this person in providing emo-

tional support?
• How helpful is this person in providing the

medical or health information that you need?
• How helpful is this person in finding effective

treatment strategies for you?
• How helpful is this person in coordinating your

overall health care?

5 point scale from “Very helpful” to “Very unhelpful”

Overall, who is most helpful...
• ...when you need an accurate medical diagnosis?
• ...when you need emotional support in dealing

with a health issue?
• ...when you need practical advice for coping with

day to day health situations?
• ...when you need information about alternative

treatments?
• ...when you need information about prescription

drugs?
• ...when you need a quick remedy for an everyday

health issue?
• ...when you need a recommendation for a doctor

or specialist?
• ...when you need a recommendation for a hos-

pital or other medical facility?

{Health professionals, Friends and family, Fellow
patients, Online sources}

TABLE I
SURVEY QUESTIONS



We tested this survey internally to identify potential prob-
lems and estimate the time it would take to complete. We
then distributed the survey to 26 different Facebook groups for
people with specific chronic illnesses. We also distributed our
survey on Reddit, targeting 8 subreddits of specific chronic
illnesses. We did not recruit more widely on social media
because we did not want to create additional privacy risks
by encouraging people to indicate to a social network that
they had a chronic disease if they had not already done so (by
their participation in a disease specific group). We received
341 responses to our survey overall.

B. Survey Responses

Of the 341 responses, we omitted 13 incomplete responses
(i.e. the respondent had skipped one or more questions). This
left us with 328 responses in our data.

Disease names were entered as text by survey respondents
(in many cases respondents had multiple commorbidities and
listed these in the text box). One side effect of this approach is
that it excluded anyone undiagnosed; everyone who completed
the survey knew the name of the condition(s) they had. We
discuss the potential for extending this work to undiagnosed
populations in Section VII below.

We discretized the disease names as one or more rare
diseases (30.34%), or one or more common chronic illnesses
(60.66%). For the 6 respondents having at least one common
chronic illness and at least one rare disease, we created
duplicate entries, labelling one entry as common and one
entry as rare. We did not have enough of these examples to
consider them as a third category, but believed they may have
characteristics of either population. We define “rare disease”
using the NIH Genetic and Rare Disorder Information Center’s
database1.

Respondents ranged in age from 18 to 71 (x̄ = 31.71, s =
12.71). We discretized these into 5 year bins. The number
of years the respondent had been experiencing symptoms and
the number of years since the respondent had been diagnosed
were similarly discretized into bins.

The data set consisted of responses from 39.00% male
respondents and 59.53% female respondents (1.46% of respon-
dents did not identify with either gender).

We received responses from 22 different countries, primar-
ily the US (58.46%), Canada (12.46%), UK (10.39%), and
Australia (8.01%). Other countries included Czech Republic,
Denmark, France, Germany, Hungary, Israel, Latvia, Malaysia,
Mexico, Netherlands, New Zealand, Norway, Poland, Portugal,
Romania, Russia, Sri Lanka, and Sweden. We defined “rare
disease” using the NIH’s database, given that the majority of
survey respondents were from individuals living in the US but
we recognize that this is a limitation of this work; diseases
that are rare in the US may not be rare in other countries
(and vice versa). Given that we are trying to capture the
experience of having a disease that is rare and not the clinical
or medical information about the disease, an ideal data set

1https://rarediseases.info.nih.gov/

would take into account whether or not the disease was rare
in the country where the survey respondent lived. However,
rare disease databases do not exist in many of the countries
represented in our data.

Many of the questions in the survey asked the respondents
to “check all that apply”. Each of these checkboxes was treated
as a binary feature (checked/unchecked). This provided us with
a total of 70 features.

IV. APPROACH

In this study, our main interest is to identify people with
rare diseases. By definition, the number of people with rare
diseases is much smaller than the number of people with
common diseases. In machine learning, this is referred to
as class imbalance. The nature of class imbalance problems
is that the cost associated with misclassifying the rare class
(in our case, rare diseases) is higher than misclassifying the
common class (common chronic illnesses). The cost matrix
does not contain uniform cost values but rather has a higher
cost for the instances that are rare diseases but classified as
common chronic illnesses than for those that are common
chronic illness but are classified as rare. If we assume the class
of rare disease as the positive class, then we prefer recall (how
many relevant items are selected) rather than precision (how
many selected items are relevant).

In this section, we show how to incorporate such domain
knowledge into the cost matrix when using machine learn-
ing. Particularly, expanding on our prior work on relational
models [15], we introduce a penalty term into the objective
function of a learning algorithm that allows for the trade-
off between the precision and recall to be tuned during the
learning process.

The learning algorithm we employ is called functional-
gradient boosting (FGB) [15], [26]–[30]. We use y to denote
the class variable (in our case rare/common disease), X to be
the set of features, xj to be the jth feature and the suffix i to
denote the ith example. Thus ŷi is the true label for the ith

example and Xi is the set of all features for the ith example. In
our case, each survey respondent is an example, their disease
type (rare/common) is the class, and their answers to all the
survey questions is the feature values.

The goal of many probabilistic models is to learn the
distribution P (yi|Xi) for all examples i. Given a training
set, most methods optimize the loglikelihood over the training
set, where loglikelihood is given as LL =

∑
i log(P (yi|Xi)).

Gradient-descent is usually performed on the loglikelihood to
find the best set of parameters that model the training data.

FGB methods employ a similar approach with two key
differences. First, they represent the conditional distributions
using a sigmoid function,

P (yi|Xi) =
eψ(yi=ŷi|Xi)∑
y′i
eψ(yi=(y′1|Xi)

(1)

where the denominator is the sum over all the possible label
values of the example. Given that our classification task is



Fig. 1. Functional Gradient Boosting Process

binary, this sum is performed over the common and rare
disease probabilities. Now the loglikelihood can be written
as,

logLL =
∑
i

[ψ(yi = ŷi; Xi)− log
∑
y′i

exp{ψ(y′i; Xi)}] (2)

The second key difference between an FGB approach and a
standard gradient-descent approach is the process of obtaining
the gradients. While standard methods differentiate LL with
respect to P (y|X) (the parameters of the distribution), FGB
methods differentiate LL with respect to ψ (the function that
models this conditional distribution). Friedman [26] took this
derivative with respect to each training example i. This is an
approximation of the true gradient but led to excellent results
in many real-tasks [15], [26]–[30].

The gradient of equation 2 with respect to the potentials
(ψi) for each example i is:

∆(yi) = I(ŷi = Rare)− P(yi = Rare; Xi), (3)

where I is an indicator function which returns 1 for rare
diseases and 0 for common chronic illnesses.

This gradient depends on how well the current model fits
the true label of the example, and then is assigned to each
example to generate a regression dataset. If it fits well, the
gradient would approach 0 and if it does not, the predicted
probability of the example would be far from the true label
and hence make the boosting algorithm attach a high weight to
that example. Then in the next iteration, we learn a regression
function to fit the current regression dataset and add this to
the model to improve the probabilistic predictions. As these
iterations go on, the probability of all positive examples is
pushed towards 1, and all the negative examples towards 0.
This process is shown in Figure 1.

While this method is successful, it still treats the misclassi-
fied negative examples and positive ones equally. In this study,
it is important that we classify rare diseases more correctly;
the goal is to achieve a higher recall for rare diseases.
This can be achieved by modifying the objective function to
incorporate this cost difference. Specifically, we add a term to
the objective function so the positive and negative examples
can be penalized differently.

Following the work of Gimpel and Smith [31] and Yang
et al. [15], we introduce a cost function into the objective
function:

c(ŷi, y) = α I(ŷi = 1 ∧ y = 0) + βI(ŷi = 0 ∧ y = 1),

where ŷi is the true label of the ith instance and y is the
predicted label. c(ŷi, y) = 0 when the example has been
correctly classified. c(ŷi, y) = α when it is a rare disease
example but classified as common, while c(ŷi, y) = β when
it is a common chronic illness example but classified as
rare. The key difference from Yang et al. [15] is that their
method assumed a relational representation, while we use
the answers to the survey questions as features. They were
interested in learning joint models, while we employ the
algorithm in the context of learning a single probabilistic
function. That is, we are estimating the conditional probability
P (disease = rare|responses). Given this difference, our
new objective function is now:

log J =
∑
i

[ψ(yi; Xi)− log
∑
y′i

exp {ψ(y′i; Xi) + c(ŷi, y
′
i)}]

(4)
Note the difference to the original FGB function in Equation

2. We now include a cost function that essentially allows
for different misclassification costs for different labels. In our
cases, missing rare diseases is costlier than missing common
diseases. The gradient of the objective function with respect
to ψ(yi = Rare; Xi) can be shown as:

∂ log J

∂ψ(yi = Rare; Xi)

= I(yi = Rare; Xi)−
P (y = Rare; Xi)ec(yi,y=Rare)∑

y′i
[P (y′i; Xi)ec(yi,y

′
i)]

(5)

The gradients of the objective function can be rewritten
compactly as:

∆ = I(ŷi = 1) − λP (yi = 1; Xi). (6)

Where:

λ =
ec(ŷi,y=1)∑

y′ [P (y′; Xi) ec(ŷi,y′)]
.

For Rare disease examples, we have:

λ =
1

P (y′ = 1; Xi) + P (y′ = 0; Xi) · eα
.

As α → ∞, which amounts to putting a large positive cost
on the false negatives, λ → 0 and the gradients ignore the
predicted probability as the gradient is pushed closer to 1
(∆→ 1), indicating a harsher penalty on misclassified positive
examples. On the other hand, when β → −∞, the gradients
are pushed closer to 0 (∆→ 0), indicating more tolerance on
misclassified negative. By setting the parameters α > 0 and
β < 0, the different costs of false positive and false negative
examples can be incorporated into the learning process, hence
the trade-off between precision and recall can be controlled.



1: function SOFTRFGB(Data)
2: for 1 ≤ m ≤M do
3: S :=GENSOFTMEGS(Data;Fm−1)
4: ∆m :=FITRELREGRESSTREE(S)
5: Fm := Fm−1 + ∆m

6: end for
7: end function
8: function GENSOFTMEGS(Data, F )
9: S := ∅

10: for 1 ≤ i ≤ N do
11: pi = P (yi = 1|xi) = sigmoid(F (yi;xi))
12: if ŷi = 1 then
13: λ = 1/(pi + (1− pi) · eα)
14: else
15: λ = 1/(pi + (1− pi) · e−β)
16: end if
17: ∆(yi;xi) := I(yi = 1)− λP (yi = 1|xi)
18: S := S ∪ [(yi),∆(yi; ;xi))]
19: end for
20: return S . Return regression examples
21: end function
22: function FITRELREGRESSIONTREE(S)
23: Tree := createTree(P (X))
24: Beam := {root(Tree)}
25: while numLeaves(Tree) ≤ L do
26: Node := popBack(Beam) . Node w/ worst score
27: C := createChildren(Node) . Create children
28: BN := popFront(Sort(C, S)) . Node w/ best score
29: addNode(Tree, Node, BN)
30: . Replace Node with BN
31: insert(Beam, BN.left, BN.left.score)
32: insert(Beam, BN.right, BN.right.score)
33: end while
34: return Tree
35: end function

Fig. 2. Soft-RFGB: RFGB with Soft-Margin

We show our approach in Figure 2. We iterate through M
steps and in each iteration, we generate examples based on
the soft-margin gradients. We learn a relational regression tree
to fit the examples using FITRELREGRESSIONTREE which
is added to the current model. We limit our trees to have
maximum L leaves and greedily pick the best node to expand.

For generating the regression examples (GENSOFTMEGS
function), we iterate through all the examples (N in the
algorithm). For each example, we calculate the probability
of the example being true (pi) based on the current model.
We then calculate the gradients based on a simplification of
Equation 6. The example and its gradient is added to the set
of regression examples, S.

V. EXPERIMENTS

Our experiments focus on answering two key questions:
Q1: How effective is a class imbalance approach in detecting

rare diseases using self-reported behavioural data?

Q2: How effective is our method in handling class imbalance
as part of the classification process (as opposed to chang-
ing the class distribution)?

To answer Q1, we compare four standard, widely used
supervised classification methods (Naı̈ve Bayes, Logistic Re-
gression, 5-Nearest Neighbours, and Decision Trees) that are
not specifically designed to handle class imbalance against
four class imbalance methods (random undersampling, random
oversampling, Synthetic Minority Oversampling TEchnique
(SMOTE) [32] and our cost-sensitive boosted probabilistic
classifier).

To answer Q2, we compare our cost-sensitive boosted prob-
abilistic classifier against two random sampling methods, as
these methods have been shown to be effective in imbalanced
datasets [33], [34]. We additionally compare our classifier
against SMOTE [32], a state of the art oversampling method
that generates synthetic examples along the line segments
joining the minority examples with their 5 nearest neighbours.

In all experiments, we performed 10-fold cross validation,
and the test sets were consistent between experiments. The
results of these experiments (Table II) are presented as aver-
ages of the results from the 10 test sets. Standard evaluation
metrics include accuracy, Area Under ROC curve (AUC-ROC)
and F1 (the harmonic mean of precision and recall). We
include these metrics, which measure accuracy with a balanced
weight between positive and negative examples, but we focus
primarily on evaluation metrics that assign higher weights to
higher recall regions. Specifically, we report on two additional
metrics: F3, and F5, where this F-measure is:

Fβ = (1 + β2)
Precision ·Recall

(β2 · Precision) +Recall

where β is the importance given to recall over precision (i.e.
a higher β indicates more emphasis on recall and a smaller
β indicates more emphasis on precision). We use F3 and F5

to increase the importance of recall over precision. We also
report the confusion matrix for each experiment.

The class imbalance methods generally outperform the
standard methods at identifying rare examples (TP, FN, F3,
and F5). Thus, Q1 can be answered affirmatively in that class
imbalance methods are more effective at identifying people
with rare diseases. There is a slight trade off when using these
methods in our ability to identify common examples (see FP,
TN, Accuracy). We see this trade off as acceptable; we would
rather falsely identify someone as having a rare disease who
actually has a common chronic illness than miss someone who
actually has a rare disease. If we can identify someone who
may have a rare disease from their online behaviour, we can
direct them towards appropriate medical and clinical resources
to find out for sure (or at least with greater certainty).

Additionally, we can see that our approach comfortably
outperforms other class imbalance methods in many respects.
It performs substantially better on every class imbalance
evaluation metric (TP, FN, F3, F5) without losing too much
performance on the standard evaluation metrics. Sampling
methods alter the class distribution in the training set, which



Standard Classification Methods Class Imbalance Classification Methods
Naı̈ve
Bayes

Logistic
Regression

5-Nearest
Neighbours

Decision
Trees (J48)

Random
Oversampling

Random
Undersampling

SMOTE Soft-
FGB

Standard
Evaluation
Metrics

FPR* 0.185 0.263 0.088 0.188 0.226 0.292 0.214 0.758
TNR 0.815 0.737 0.912 0.812 0.774 0.708 0.786 0.242

AUC-ROC 0.749 0.615 0.684 0.612 0.742 0.759 0.685 0.717
Accuracy 0.713 0.641 0.724 0.690 0.687 0.688 0.690 0.467

F 0.514 0.401 0.360 0.437 0.491 0.566 0.478 0.523

Class
Imbalance
Evaluation
Metrics

TPR 0.507 0.413 0.288 0.408 0.511 0.657 0.472 0.972
FNR* 0.492 0.587 0.712 0.592 0.489 0.343 0.528 0.028

F3 0.507 0.400 0.299 0.412 0.504 0.632 0.471 0.825
F5 0.507 0.402 0.293 0.410 0.508 0.647 0.472 0.909

TABLE II
EXPERIMENTAL RESULTS FOR PREDICTING RARE DISEASES.

GREEN INDICATES BEST PERFORMANCE.
ASTERISK INDICATES THE METRIC SHOULD BE MINIMIZED (ALL OTHER METRICS SHOULD BE MAXIMIZED).

makes the training set not as reflective of the true test set. It
is therefore unsurprising that a method that handles class im-
balance in a principled manner would outperform a sampling
method. Thus, Q2 can also be answered affirmatively.

VI. DISCUSSION

Our findings from this study illustrate it is possible to
identify people with rare diseases based on self-reported be-
havioural data using a soft-FGB approach. This suggests that,
as we reported in our qualitative interview study [9], people
with rare disease have unique challenges that are distinctly
different from people with common chronic illnesses and this
presents design opportunities not yet addressed by existing
interventions and human computer interaction research. When
we examine the trees produced by the soft-FGB, we see that
the features used to identify people with rare diseases are well-
aligned with these previous qualitative findings.

A sample of one of the learned trees is provided in Figure 3.
If we examine this tree node by node, we can understand
the behaviours that distinguish people with common chronic
illnesses from people with rare diseases. Our previous work
indicated that people with rare disease take on a much more
active role in managing and seeking information about their
health [9]. Given the rarity of the conditions, people with rare
diseases do not often have in-person access to others with the
same conditions, so they turn to online communities to connect
with others [9], [10], [35]–[37]. It makes sense that they
would be more engaged in activities like watching videos by
people with similar health circumstances. Additionally, people
with rare diseases are known to contribute to these online
communities by posting their own data/test results and talking
extensively about their experiences [9], [38]–[41] (including
posting their own videos online to share with others).

People with common chronic illnesses do not have the same
need to engage in this online support and information seeking
behaviour, because there is more information available through
medical professionals in the first place and more support
available locally. It seems reasonable that many people with
common chronic illnesses would have never joined a health
group on a social network, never posted a review of a hospital,

never memorialized or remembered someone suffering from a
health condition, never used the Internet to seek information
about medical test results, etc. (as is shown in Figure 3). It is
also unsurprising that people with common chronic illnesses
have only 1–2 specialists (where it is known that people with
rare diseases may have many [10]).

Of particular interest is the few areas where people with
common chronic illnesses do use technology or the Internet
to manage their health; people with common chronic illnesses
have used a smartphone app to track health information. We
suspect this is because many of the mobile health applications
available commercially are designed to target the symptoms,
causes, and management of specific chronic illnesses. These
conditions are well studied in the medical literature and have
a specific and known set of symptoms and treatments, so tech-
nologies are customized to specific illnesses. The equivalent
applications for rare diseases simply do not exist. We believe
that if they did exist, people with rare diseases would be
equally likely to use them.

VII. FUTURE WORK

In our study, survey respondents provided a name of a
disease or health condition. This meant they were already
diagnosed and knew what condition they had. Additionally,
all of the data represented self-reported accounts of behaviour
(which may be different than actual behavioural data that could
be gathered in real-time). We see value in extending this work
to use social network data (as in [19], [24]) in addition to self-
reported behavioural data. A social platform or tool capable of
doing this type of classification or identification in real time
could identify people who are not yet diagnosed.

An additional factor to consider would be identifying people
with rare diseases amongst healthy populations. Our current
study focused on the distinction between common chronic
illness and rare disease populations, but it may be interesting to
identify those groups from broader social media data. We can
imagine that even people who do not have a chronic illness di-
agnosis may still engage in health information seeking online,
if they are interested in general wellness for themselves, or
are seeking information for a close friend or family member.



Fig. 3. Sample tree learned in soft-FGB
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